Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE)
نویسندگان
چکیده
In applications of Gaussian processes where quantification of uncertainty is of primary interest, it is necessary to accurately characterize the posterior distribution over covariance parameters. This paper proposes an adaptation of the Stochastic Gradient Langevin Dynamics algorithm to draw samples from the posterior distribution over covariance parameters with negligible bias and without the need to compute the marginal likelihood. In Gaussian process regression, this has the enormous advantage that stochastic gradients can be computed by solving linear systems only. A novel unbiased linear systems solver based on parallelizable covariance matrix-vector products is developed to accelerate the unbiased estimation of gradients. The results demonstrate the possibility to enable scalable and exact (in a Monte Carlo sense) quantification of uncertainty in Gaussian processes without imposing any special structure on the covariance or reducing the number of input vectors.
منابع مشابه
Numerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کاملGaussian Processes for Big Data through Stochastic Variational Inference
Gaussian processes [GP 10] are perhaps the dominant approach for inference on functions. They underpin a range of algorithms for regression, classification and unsupervised learning. Unfortunately, exact inference in a GP has complexity O(n) with storage demands of O(n) and this hinders application of these models for ‘big data’. Various approximate techniques have been suggested [see e.g. 1, 1...
متن کاملIdentification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملStochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints
Gaussian process latent variable models (GPLVMs) are a probabilistic approach to modelling data that employs Gaussian process mapping from latent variables to observations. This paper revisits a recently proposed variational inference technique for GPLVMs and methodologically analyses the optimality and different parameterisations of the variational approximation. We investigate a structured va...
متن کاملGeneralizing and Scaling up Dynamic Topic Models via Inducing Point Variational Inference
Dynamic topic models (DTMs) model the evolution of prevalent themes in literature, online media, and other forms of text over time. DTMs assume that topics change continuously over time and therefore impose continuous stochastic process priors on their model parameters. In this paper, we extend the class of tractable priors from Wiener processes to the generic class of Gaussian processes (GPs)....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015